Online ISSN

Print ISSN

3006-4635

3006-4627

Vol. 3 No. 6 (2025)

EFFECTS OF LOW-INTENSITY EXERCISE ON ANTHROPOMETRICS AND BODY COMPOSITION IN SEDENTARY ADULTS

¹Haseenullah, ²Dr. Syed Asif Abbas, ³Dr. Shahzaman Khan, ⁴Shoaib Nawaz Khan

¹P.hD Scholar, Department of Sports Sciences and Physical Education, Gomal University, Dera Ismail Khan, KP, Pakistan. `

²HoD, Department of Sports Sciences and Physical Education, Gomal University, Dera Ismail Khan, KP, Pakistan.

³HoD/Assistant Prof. Department of Physical Education and Sports Sciences, Sukkur IBA University ⁴P.hD Scholar. Lecturer in Health and Physical Education, Government Post Graduate College, Bannu, KP, Pakistan.

¹haseenullah.ustb@gmail.com, ²syedasifabbasshah@gu.edu.pk, ³shahzaman@iba-suk.edu.pk ⁴Kohat1955@gmail.com

Abstract

Sedentary lifestyles contribute significantly to obesity and metabolic disorders in Pakistan, yet the efficacy of accessible low-intensity exercise (LIE) remains unexplored in this population. This study investigated the effects of a 12-week supervised LIE program on anthropometrics and body composition in sedentary Pakistani adults. Thirty participants (aged 18-25) were randomly assigned to a Low-Intensity Group (LIG, n=15) performing aerobic exercise (40–50% HRR, 3x/week) or a no-intervention Control Group (CG, n=15). Anthropometrics (weight, BMI, waist/hip circumferences, waist-hip ratio [WHR]) and body composition (fat percentage) were measured pre- and post-intervention. While no statistically significant between-group differences emerged (p > 0.05), the LIG demonstrated consistent reductions in weight (-2.07 kg), BMI (-0.53 kg/m²), waist circumference (-0.50 cm), hip circumference (-0.43 cm), WHR (-0.0029), and body fat percentage (-0.48%), whereas the CG showed negligible change. WHR exhibited the largest effect size improvement (Glass's $\Delta = -3.626$, p=0.055). These trends suggest LIE may improve body composition, particularly abdominal adiposity (WHR), in sedentary Pakistani adults, supporting its feasibility as a scalable public health intervention despite sample size limitations.

Keywords: Low-intensity exercise, anthropometrics, body composition, waist-hip ratio & sedentary adults

Article Details:

Received on 12 May 2025 Accepted on 15 June 2025 Published on 18 June 2025

Corresponding Authors*:

Online ISSN

Print ISSN

3006-4635

3006-4627

Vol. 3 No. 6 (2025)

INTRODUCTION

Sedentary lifestyles are increasingly prevalent in Pakistan, contributing to rising obesity rates and associated health burdens such as diabetes and cardiovascular disease (Zouhal et al., 2020). Physical inactivity exacerbates adverse changes in anthropometrics (e.g., waist circumference, BMI) and body composition (e.g., fat mass, lean mass), particularly in adults with prolonged sedentary behavior (Savikangas et al., 2020). Exercise is a cornerstone for mitigating these risks, but the optimal intensity for sedentary populations remains debated. While high-intensity exercise often yields rapid results, its feasibility for sedentary adults is limited by low tolerance and high dropout rates (Donges & Duffield, 2012; Paoli et al., 2013).

Low-intensity exercise (LIE) offers a sustainable alternative, potentially improving adherence while still inducing favorable physiological adaptations. Studies demonstrate that LIE can reduce fat mass and improve cardiometabolic health, even in obese individuals (Madhusudhan, 2014; Umamaheswari et al., 2017). For instance, Chiu et al. (2017) reported significant body fat reduction in young adults after low-intensity aerobic training, while Amaro-Gahete et al. (2019) found comparable body composition improvements between low- and high-intensity programs over 12 weeks. Recent research further supports LIE's efficacy in diverse populations, including clinical cohorts (Waked, 2019; Seyam et al., 2022) and older adults (Savikangas et al., 2020). Notably, Horváth et al. (2024) documented reduced adiposity and improved metabolic markers in morbid obesity following low-intensity aerobic training, reinforcing its therapeutic value.

Despite robust global evidence, data on LIE's effects in Pakistan where cultural, environmental, and socioeconomic factors uniquely influence physical activity remain scarce. No studies have explicitly examined how LIE interventions impact anthropometrics and body composition in sedentary Pakistani adults, who face distinct barriers to exercise (e.g., limited access to facilities, gender-specific constraints). This trial addresses this gap by implementing a 12-week supervised LIE program (Low-Intensity Group, LIG) versus a no-intervention Control Group (CG) in sedentary Pakistani adults.

STATEMENT OF THE PROBLEM

While substantial global evidence demonstrates that low-intensity exercise (LIE) can positively impact anthropometrics (e.g., BMI, waist circumference) and body composition (e.g., body fat percentage, lean mass) in sedentary and obese populations (e.g., Chiu et al., 2017; Amaro-Gahete et al., 2019; Horváth et al., 2024), its specific efficacy within the unique cultural, environmental, and socioeconomic context of Pakistan remains unexplored. We lack critical data on whether accessible LIE interventions yield comparable benefits for sedentary Pakistani adults, who face distinct barriers to physical activity and exhibit high rates of obesity-related morbidity. Understanding the effectiveness of LIE in this population is crucial for developing feasible, scalable public health strategies to combat Pakistan's growing burden of non-communicable diseases. Therefore, this study aims to investigate the effects of a 12-week supervised low-intensity exercise program (Low-Intensity Group, LIG) compared to a no-intervention control (Control Group, CG) on key anthropometric measures and body composition parameters in sedentary Pakistani adults.

HYPOTHETICAL STATEMENT

We hypothesize that the LIG will exhibit significantly greater improvements in anthropometrics (e.g., reduced waist circumference, BMI) and body composition (e.g., decreased fat mass, increased lean mass) compared to the CG, demonstrating the efficacy of low-intensity exercise as a feasible public health strategy in Pakistan.

Online ISSN

Print ISSN

3006-4635

3006-4627

Vol. 3 No. 6 (2025)

RESEARCH METHODOLOGY RESEARCH DESIGN

This study employed a pre-test/post-test true experimental design with a control group. Participants were randomly assigned to either the intervention group (Low-Intensity Group - LIG) or the control group (Control Group - CG). Measurements for all dependent variables were taken at baseline (Week o) and immediately following the 12-week intervention period (Week 12) for both groups.

PARTICIPANTS

Thirty (n=30) sedentary college-level adults (aged approximately 18-25 years) from local institutions in Bannu District were recruited. Inclusion criteria required participants to be: (1) classified as sedentary, defined as engaging in less than 150 minutes of moderate-intensity physical activity per week for the past 6 months; (2) aged between 18 and 25 years; (3) possessing a Body Mass Index (BMI) within the range of 18.5 kg/m² to 29.9 kg/m² (normal weight to overweight, excluding obesity); (4) free from any known chronic cardiovascular, metabolic (e.g., diabetes), musculoskeletal, or respiratory illnesses that would contraindicate exercise; (5) non-smokers; and (6) residing within Bannu District for the study duration. Participants meeting these criteria were screened and provided informed consent.

GROUP ALLOCATION

Following recruitment and screening, the 30 eligible sedentary college-level adults were randomly assigned and equally divided into two distinct groups: a Low-Intensity Group (LIG) consisting of 15 participants who received the supervised 12-week low-intensity exercise program, and a Control Group (CG) also consisting of 15 participants who were instructed to maintain their usual sedentary lifestyle and received no exercise intervention throughout the study period.

LOW-INTENSITY EXERCISE PROGRAM

The Low-Intensity Group (LIG) participated in a supervised, structured 12-week low-intensity exercise program conducted at the Sports Complex, Bannu District. Sessions were held three times per week (e.g., Monday, Wednesday, Friday) from 5:30 PM to 6:30 PM, with each 60-minute session comprising a warm-up, main exercise period, and cool-down. Exercise intensity was strictly maintained at a low level, corresponding to approximately 40-50% of Heart Rate Reserve (HRR) or a Rating of Perceived Exertion (RPE) of 9-11 on the Borg 6-20 scale; adherence to this target intensity zone was monitored using Polar or Garmin heart rate monitors. The primary mode of exercise consisted of aerobic activities such as brisk walking, light cycling on stationary bikes, or low-impact aerobics. All sessions were directly supervised by qualified fitness instructors to ensure participant safety, correct exercise technique, and consistent adherence to the prescribed intensity protocol throughout the intervention period.

RESULTS AND DISCUSSION

TABLE 1: PRE-TEST AND POST-TEST MEASUREMENT

Descriptive Statistics									
	Std.								
	N	Minimur	nMaximur	nMean	Deviatio	nSkewr	ness	Kurto	sis
							Std.		Std.
	Stati	sticStatistic	Statistic	Statisti	cStatistic	Statis	ticErro	r Statist	ticError
Pre Weight	30	70.00	91.00	76.1500	5.77201	1.371	.309	.844	.608
Post Weight	30	68.00	90.00	74.6333	5.80463	1.378	.309	1.055	.608

Online ISSN

Print ISSN

3006-4635

3006-4627

Vol. 3 No. 6 (2025)

Pre Height	30	5.10	5.90	5.5112	.36353	221	.309	-1.946	.608
Post Height	30	5.10	5.90	5.5112	.36353	221	.309	-1.946	.608
Pre BMI	30	22.20	29.50	24.7067	7 1.85791	1.171	.309	.606	.608
Post BMI	30	21.80	29.00	24.2850	1.83181	1.151	.309	.784	.608
Pre Waist	30	30.00	37.00	32.3167	1.78023	.918	.309	211	.608
Post Waist	30	29.50	36.50	31.7833	1.78356	.932	.309	015	.608
Pre Hip	30	33.30	41.00	35.9283	1.96995	.885	.309	271	.608
Post Hip	30	32.50	40.50	35.4450	1.97024	.871	.309	138	.608
Pre Waist-Hip	30	.85	.93	.8995	.00830	-3.430	.309	29.805	.608
Ratio									
Post Waist-Hij	p30	.84	.92	.8969	.00867	-3.642	.309	24.760	.608
Ratio									
Pre Body	30	13.60	24.20	17.5467	2.79706	1.136	.309	.547	.608
Composition									
Post Body	30	12.60	23.50	16.9250	2.78553	.970	.309	.364	.608
Composition									
Valid N	30								
(listwise)									
D : .: .		C .	, 1				11		

Descriptive statistics for pre-test and post-test measurements across all 30 participants show consistent, small decreases in mean values for Weight, BMI, Waist Circumference, Hip Circumference, Waist-Hip Ratio, and Body Composition (body fat %) after the 12-week period. Height remained unchanged, as expected. The variability (Standard Deviation) for each measure was stable between pre- and post-testing. Significant negative skewness and high positive kurtosis in Waist-Hip Ratio indicate a non-normal distribution concentrated at the higher end of the scale for this variable.

TABLE 2: COMPARATIVE ANALYSIS BETWEEN LIG AND CG

Group Statistics								
	Crouns	N	Mean	Std. Deviat	Std. Error			
D 147 t 1 .	Groups							
Pre Weight	LIG	15	78.0667	6.37480	1.64597			
	CG	15	75.9333	6.19293	1.59901			
Post Weight	LIG	15	76.0000	6.33584	1.63591			
	CG	15	75.9333	6.19293	1.59901			
Pre Height	LIG	15	5.4880	.37436	.09666			
	CG	15	5.4873	.37509	.09685			
Post Height	LIG	15	5.4880	.37436	.09666			
	CG	15	5.4873	.37509	.09685			
Pre BMI	LIG	15	25.2933	2.32209	.59956			
	CG	15	24.5933	1.49163	.38514			
Post BMI	LIG	15	24.7600	2.35002	.60677			
	CG	15	24.5933	1.49163	.38514			
Pre Waist	LIG	15	33.0000	2.07020	.53452			
	CG	15	32.0667	1.48645	.38380			
Post Waist	LIG	15	32.5000	2.07020	.53452			
	CG	15	32.0667	1.48645	.38380			
Pre Hip	LIG	15	36.8333	2.11784	.54682			
	CG	15	35.6200	1.66356	.42953			

Online ISSN

Print ISSN

3006-4635

3006-4627

Vol. 3 No. 6 (2025)

95%

LIG	15	36.4000	2.08567	.53852
CG	15	35.6200	1.66356	.42953
LIG	15	.8958	.01394	.00360
CG	15	.9003	.00204	.00053
LIG	15	.8929	.01414	.00365
CG	15	.9003	.00204	.00053
LIG	15	17.3867	2.94178	.75957
CG	15	17.4533	1.63439	.42200
LIG	15	16.9067	2.84491	.73455
CG	15	17.4533	1.63439	.42200
	CG LIG CG LIG CG LIG CG LIG	CG 15 LIG 15 CG 15 LIG 15 CG 15 LIG 15 CG 15 LIG 15 LIG 15	CG 15 35.6200 LIG 15 .8958 CG 15 .9003 LIG 15 .8929 CG 15 .9003 LIG 15 17.3867 CG 15 17.4533 LIG 15 16.9067	CG 15 35.6200 1.66356 LIG 15 .8958 .01394 CG 15 .9003 .00204 LIG 15 .8929 .01414 CG 15 .9003 .00204 LIG 15 17.3867 2.94178 CG 15 17.4533 1.63439 LIG 15 16.9067 2.84491

LIG=Low Intensity Group; CG=Control Group

Independent Samples Test

Levene's Test for Equality of

Variancest-test for Equality of Means

Confidence Interval of the **Std. Error Difference** Sig. (2-Mean tailed)DifferenceDifferenceLower Upper Sig. T df Pre Weight Equal 2.29478 6.83398 1.116 .300 .930 28 .361 2.13333 variances 2.56732 assumed Equal 6.83416 .930 27.977.361 2.29478 2.13333 variances 2.56750 not assumed Post Weight Equal .987 .329 .029 28 2.28758 .06667 .977 4.75256 variances 4.61923 assumed 2.28758 Equal .029 27.985.977 .06667 4.75267 variances 4.61934 not assumed Pre Height Equal .002 .963 .005 28 .996 .00067 .13683 -.27962.28095 variances assumed Equal .005 28.000.996 .00067 .13683 -.27962.28095 variances not assumed

Online ISSN Print ISSN

3006-4635

3006-4627

Post Height	variances	.005	28	.996	.00067	.13683	27962.28095
	assumed Equal variances	.005	28.000	0.996	.00067	.13683	27962.28095
	not assumed						
Pre BMI	Equal 4.797.037 variances assumed	.982	28	·334	.70000	.71260	75970 2.15970
	Equal variances not assumed	.982	23.873	.336	.70000	.71260	77116 2.17116
Post BMI	Equal 5.048.033 variances assumed	.232	28	.818	.16667	.71868	- 1.63882 1.30548
	Equal variances not	.232	23.705	.819	.16667	.71868	-1.317591.65093
Pre Waist	assumed Equal 6.394.017 variances	1.418	28	.167	.93333	.65804	41460 2.28127
	assumed Equal variances not	1.418	25.404	168	.93333	.65804	420832.28750
Post Waist	assumed Equal 6.394.017 variances	.659	28	.516	.43333	.65804	91460 1.78127
	assumed Equal variances not	.659	25.404	516	.43333	.65804	920831.78750
Pre Hip	assumed Equal 4.524.042 variances	1.745	28	.092	1.21333	.69535	21103 2.63769
	assumed Equal variances	1.745	26.513	.093	1.21333	.69535	21463 2.64130
Post Hip	not assumed Equal 4.085.053 variances assumed	1.132	28	.267	.78000	.68884	63102 2.19102

Online ISSN Print ISSN

3006-4635

3006-4627

	Equal	1.132 26.681 .268	.78000	.68884	63417 2.19417
	variances				
	not				
	assumed				
Pre Waist-	Equal 4.594.041	-1.23528 .227	00449	.00364	01194 .00296
Hip Ratio	variances				
	assumed				
	Equal	-1.23514.598 .236	00449	.00364	01227 .00328
	variances				
	not				
	assumed				
Post Waist-	Equal 4.247.049	- 28 .055	00739	.00369	01495 .00017
Hip Ratio	variances	2.004			
	assumed				
	Equal	- 14.581 .064	00739	.00369	01527 .00049
	variances	2.004			
	not				
	assumed				
Pre Body	Equal 5.015 .033	077 28 .939	06667	.86892	- 1.71324
Composition	nvariances				1.84657
	assumed				
	Equal	077 21.891 .940	06667	.86892	- 1.73588
	variances				1.86922
	not				
	assumed				
Post Body	Equal 4.521 .042	645 28 .524	54667	.84714	- 1.18863
Composition	nvariances				2.28196
	assumed				
	Equal	645 22.334 .525	54667	.84714	- 1.20868
	variances				2.30201
	not				
	assumed				

Independent Samples Effect Sizes								
				95% Con	fidence			
			Point Interval					
		Standardiz	zer ^a Estimate	Lower	Upper			
Pre Weight	Cohen's d	6.28452	.339	385	1.058			
	Hedges' correction	6.45937	.330	374	1.029			
	Glass's delta	6.19293	·344	388	1.065			
Post Weight	Cohen's d	6.26479	.011	705	.726			
	Hedges' correction	6.43908	.010	686	.707			
	Glass's delta	6.19293	.011	705	.726			
Pre Height	Cohen's d	·37473	.002	714	.717			

Online ISSN

Print ISSN

3006-4635

3006-4627

	Hedges'	.38515	.002	695	.698
	correction				
	Glass's delta	.37509	.002	714	.717
Post Height	Cohen's d	.37473	.002	714	.717
	Hedges'	.38515	.002	695	.698
	correction				
	Glass's delta	.37509	.002	714	.717
Pre BMI	Cohen's d	1.95154	.359	366	1.077
	Hedges'	2.00584	·349	356	1.048
	correction	_	_		_
B	Glass's delta	1.49163	.469	275	1.198
Post BMI	Cohen's d	1.96819	.085	632	.800
	Hedges'	2.02294	.082	615	.778
	correction	_		_	
B 117.1	Glass's delta	1.49163	.112	607	.827
Pre Waist	Cohen's d	1.80212	.518	215	1.242
	Hedges'	1.85225	.504	209	1.208
	correction	0.6	(0		
D . 147 ' .	Glass's delta	1.48645	.628	134	1.370
Post Waist	Cohen's d	1.80212	.240	480	.957
	Hedges'	1.85225	.234	467	.931
	correction	06			
D III	Glass's delta Cohen's d	1.48645	.292	437	1.010
Pre Hip		1.90429	.637	103	1.366
	Hedges' correction	1.95727	.620	100	1.329
	Glass's delta	. 662=6		0.16	00
Post Hip	Cohen's d	1.66356 1.88646	.729	046	1.482
rostrup	Hedges'	1.00040	.413	314 205	1.134
	correction	1.93094	.402	305	1.103
	Glass's delta	1.66356	.469	- 275	1.107
Pre Waist-Hip Ratio	Cohen's d	.00996	.409 451	275 -1.172	1.197 .278
The Walst Trip Ratio	Hedges'	.01024		-1.141	.270
	correction	.01024	439	1.141	.2/1
	Glass's delta	.00204	-2.204	-3.267	-1.108
Post Waist-Hip Ratio		.01010	732	-1.466	.015
1 ost Waist The Ratio	Hedges'	.01038	·/3 2 712	-1.427	.015
	correction	.01030	./12	1.42/	.01)
	Glass's delta	.00204	-3.626	-5.121	-2.103
Pre Body	Cohen's d	2.37964	028	743	.688
Composition	Hedges'	2.44584	027	7 2 3	.669
Composition	correction	2.44)04	.027	./25	.009
	Glass's delta	1.63439	041	756	.676
Post Body	Cohen's d	2.32000	236	952	.485
Composition	Hedges'	2.38454	229	926	.472
r	correction	-9-191	· -/	·)	- 17
	Glass's delta	1.63439	334	-1.055	.397
		ノロノ	<i></i>	·))	<i>J</i> /1

Online ISSN

Print ISSN

3006-4635

3006-4627

Vol. 3 No. 6 (2025)

a. The denominator used in estimating the effect sizes.

Cohen's d uses the pooled standard deviation.

Hedges' correction uses the pooled standard deviation, plus a correction factor.

Glass's delta uses the sample standard deviation of the control group.

While no statistically significant differences (p > 0.05) were found between the Low-Intensity Group (LIG) and Control Group (CG) in any anthropometric or body composition measures at baseline (Pre) or follow-up (Post), clinically meaningful patterns emerged. The LIG demonstrated consistent *reductions* in Weight, BMI, Waist Circumference, Hip Circumference, Waist-Hip Ratio (WHR), and Body Composition (% fat) from Pre to Post, whereas the CG showed *no change* in any measure (identical Pre and Post means). Critically, the Waist-Hip Ratio (WHR) in the LIG showed the largest relative improvement (-0.0029 vs. CG's o change), supported by a medium-large effect size (Glass's Δ = -3.626) approaching significance (p=0.055). Effect sizes (Cohen's d, Glass's Δ) also suggested small-to-moderate beneficial effects for the LIG in Weight, BMI, Waist, Hip, and Body Composition, though these lacked statistical significance in this small sample (n=15 per group).

DISCUSSION

This study aimed to evaluate the efficacy of a 12-week low-intensity exercise (LIE) program on anthropometrics and body composition in sedentary Pakistani adults, addressing a critical research gap in this population. While no statistically significant betweengroup differences emerged (likely due to limited sample size, n=15/group), clinically meaningful patterns were observed: the Low-Intensity Group (LIG) demonstrated consistent reductions in weight, BMI, waist circumference, hip circumference, waist-hip ratio (WHR), and body fat percentage from baseline to post-intervention, whereas the Control Group (CG) showed no change. Notably, WHR exhibited the largest improvement in the LIG (Δ = -0.0029 vs. CG Δ =0), supported by a strong effect size (Glass's Δ = -3.626) approaching significance (p=0.055), suggesting preferential abdominal fat reduction. These findings align with global evidence indicating LIE can improve body composition, particularly visceral adiposity, even without significant weight loss (Horváth et al., 2024; Seyam et al., 2022). The observed trends in Pakistan, despite contextual barriers (e.g., heat, cultural constraints), reinforce LIE's potential feasibility and biological plausibility for inducing positive metabolic adaptations, as seen in similar populations (Amaro-Gahete et al., 2019; Zouhal et al., 2020). Key limitations include the small sample size limiting statistical power, lack of dietary control, and short intervention duration. Future research should prioritize larger randomized trials with longer interventions, incorporate dietary assessments, explore home-based LIE delivery for scalability in Pakistan, and investigate mechanisms underlying WHR improvements using direct adiposity imaging (e.g., DEXA).

CONCLUSION

This study provides preliminary evidence supporting the beneficial *trends* of a 12-week supervised low-intensity exercise (LIE) program on anthropometrics and body composition, specifically highlighting reductions in waist-hip ratio (WHR), among sedentary Pakistani adults. While statistical significance was not achieved, likely due to sample size limitations, the consistent pre-to-post reductions observed in the LIG across weight, BMI, circumferences, body fat, and particularly WHR contrasted with no change in the CG align with global research demonstrating LIE's efficacy in improving body composition, including visceral adiposity (Horváth et al., 2024; Seyam et al., 2022; Amaro-Gahete et al., 2019). The findings suggest that LIE, characterized by its accessibility

Online ISSN

Print ISSN

3006-4635

3006-4627

Vol. 3 No. 6 (2025)

and lower perceived exertion, is a feasible and potentially effective strategy for initiating positive health adaptations within the specific cultural and environmental context of Pakistan. Future research with larger samples and longer durations is warranted to confirm these effects statistically and explore the mechanisms underlying WHR improvement. Nonetheless, LIE represents a promising, scalable public health approach to combat sedentary behavior and its associated metabolic risks in this population.

RESEARCH IMPLICATIONS

This study yields three key implications:

- i. The observed trends support implementing supervised, community-based low-intensity exercise (LIE) programs (e.g., in sports complexes like Bannu) as a feasible strategy for improving body composition in sedentary Pakistani adults, particularly for reducing abdominal adiposity (WHR).
- ii. Future trials require larger samples (≥30/group) and longer durations (>12 weeks) to detect statistically significant effects, alongside standardized dietary monitoring and advanced body composition assessment (e.g., DEXA) to validate WHR-driven outcomes.
- iii. Culturally adapted LIE protocols potentially home-based or gender-segregated should be prioritized to overcome environmental (heat) and sociocultural barriers (e.g., female participation), aligning with global evidence on LIE's efficacy in similar settings (Horváth et al., 2024; Seyam et al., 2022). Collectively, these findings advocate for integrating LIE into Pakistan's public health framework to mitigate sedentary-related non-communicable diseases.

CONFLICT OF INTEREST

The authors declare no conflicts of interest, financial or otherwise, related to this research. This study received no external funding or sponsorship from entities that could influence the design, execution, analysis, or reporting of results. All authors affirm their independence and commitment to objective scientific reporting.

REFRENCES

- Amaro-Gahete, F. J., De-la-O, A., Jurado-Fasoli, L., Ruiz, J. R., Castillo, M. J., & Gutierrez, A. (2019). Effects of different exercise training programs on body composition: A randomized control trial. *Scandinavian journal of medicine & science in sports*, 29(7), 968-979.
- Chiu, C. H., Ko, M. C., Wu, L. S., Yeh, D. P., Kan, N. W., Lee, P. F., ... & Ho, C. C. (2017). Benefits of different intensity of aerobic exercise in modulating body composition among obese young adults: a pilot randomized controlled trial. *Health and quality of life outcomes*, 15, 1-9.
- Donges, C. E., & Duffield, R. (2012). Effects of resistance or aerobic exercise training on total and regional body composition in sedentary overweight middle-aged adults. *Applied Physiology, Nutrition, and Metabolism*, 37(3), 499-509.
- Horváth, J., Seres, I., Paragh, G., Fülöp, P., & Jenei, Z. (2024). Effect of Low-and Moderate-Intensity Aerobic Training on Body Composition Cardiorespiratory Functions, Biochemical Risk Factors and Adipokines in Morbid Obesity. *Nutrients*, 16(23), 4251.
- Horváth, J., Seres, I., Paragh, G., Fülöp, P., & Jenei, Z. (2024). Effect of Low-and Moderate-Intensity Aerobic Training on Body Composition Cardiorespiratory Functions, Biochemical Risk Factors and Adipokines in Morbid Obesity. *Nutrients*, 16(23), 4251.

Online ISSN

Print ISSN

3006-4635

3006-4627

- Madhusudhan, U. (2014). Effect of High and Low Intensity Aerobic Exercise on the Body Fat of Overweight Young Men (Doctoral dissertation, Rajiv Gandhi University of Health Sciences (India)).
- Paoli, A., Pacelli, Q. F., Moro, T., Marcolin, G., Neri, M., Battaglia, G., ... & Bianco, A. (2013). Effects of high-intensity circuit training, low-intensity circuit training and endurance training on blood pressure and lipoproteins in middle-aged overweight men. *Lipids in health and disease*, 12, 1-8.
- Savikangas, T., Tirkkonen, A., Alen, M., Rantanen, T., Fielding, R. A., Rantalainen, T., & Sipilä, S. (2020). Associations of physical activity in detailed intensity ranges with body composition and physical function. a cross-sectional study among sedentary older adults. *European Review of Aging and Physical Activity*, 17, 1-11.
- Seyam, M. K., Alqahtani, M., Sirajudeen, M. S., Muthusamy, H., Kashoo, F. Z., & Salah, M. M. (2022). Effect of circuit training with low-carbohydrate diet on body composition, cardiometabolic indices, and exercise capacity in adults with mild to moderate obesity in Saudi Arabia: A randomized control trial. *Medicine*, 101(33), e30054.
- Umamaheswari, K., Dhanalakshmi, Y., Karthik, S., John, N. A., & Sultana, R. (2017). Effect of exercise intensity on body composition in overweight and obese individuals. *Indian J Physiol Pharmacol*, *61*(1), 58-64.
- Waked, I. S. (2019). A Randomized Controlled Trial of the Effects of Supervised Aerobic Training Program on Anthropometry, Lipid Profile and Body Composition in Obese Adult Leukemic Patients. *Iranian Journal of Blood and Cancer*, 11(1), 26-32.
- Zouhal, H., Ben Abderrahman, A., Khodamoradi, A., Saeidi, A., Jayavel, A., Hackney, A. C., ... & Jabbour, G. (2020). Effects of physical training on anthropometrics, physical and physiological capacities in individuals with obesity: A systematic review. *Obesity reviews*, 21(9), e13039.